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1. FUNDAMENTALS OF NEURAL 
NETWORK MODELING

Main reference: Goodfellow, I., Bengio, Y., Courville, A. 
(2016) Deep Learning, MIT Press.
Recommend to read this textbook to understand the details!



Deep feedforward networks (FFN)
• Also called as multilayer perceptrons
• Goal of using (deep) FFN
– Approximate some function f that maps an input 
x to output y:

– Specifically, estimate parameters θ that result in 
the best function approximation f

• Itʼs called feedforward, since no feedback 
connections:

↑
Second 
layer

↑
First
layer

↑
Output 
layer 4



Why (Deep) NN?
• Limitations of linear regression

– Cannot consider 1) non-linearity of input variables & 2) 
interactions among input variables

• Strategies: Non-linear transformation of x: 
1. Use very generic        (e.g., Kernel)
2. Manually tune       （using expert knowledge）
3. Use neural network to tune 
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An example of FFN

Different 
notation

W: mapping from x to h (parameters)
w: mapping from h to y (parameters)

An example:
Rectified linear unit (ReLU)

6Affine transformation



Designing and training a NN
1. Define a cost function

e.g., using maximum likelihood (i.e., the cross-
entropy between the training data and the model 
distribution)

Note: there are several other cost functions, including mean 
squared error, mean absolute error, etc.
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Designing and training a NN
2. Output units

Ø Linear units for Gaussian output distributions
Ø Only use an affine transformation

Ø Sigmoid units for Bernoulli output distributions
Ø Affine transportation + logit transformation

Ø Softmax units for Multinoulli output distibutions
Ø Affine transformation + MNL transformation
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Designing and training a NN
3. Hidden units

Ø Activation functions are used on top of an 
affine transformation:

Ø A widely used activation function:
Ø ReLU: Rectified Linear Unit

Ø Generalizations of ReLU
Ø Using nonzero slope αi when z<0

1. Absolute value rectification: !" = −1
2. Leaky ReLU: Give a small fixed value to !" such as 0.01
3. Parametric ReLU: treat !" as a learnable parameter

Ø There are many other activation functions
9



Architecture design
• Architecture refers to the overall structure of the 

network. Most NNs are organized into groups of 
units called layers.

• Main architectural considerations
– The depth of the network and the width of each layer
– Whether to have skip connections or not
– How to connect a pair of layers to each other (W)
EX) Convolutional NN, Recurrent NN

• The ideal network architecture for a task must be 
found via experimentation guided by monitoring 
the validation set error. 10

・
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Universal approximation theorem
• Universal approximation theorem by Hornik et al. 

(1989), Cybenko (1989)
– This theorem says that neural networks can 

approximate any function.

• This theorem also said that “shallow” network 
structure can approximate any function, while it is 
also known that more efficient learning can be 
achieved with “deep” network structure.

• Another important issue is the interpretability of 
the fully connected NN.
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Learning algorithm
• Back-propagation algorithm (Rumelhart et al., 1986)

– Computing the gradient
• Stochastic gradient descent (SGD)
– Perform learning using the gradient
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Prediction results

Update parameters

Error gradient

Gradient for the network

(Prediction – Output)

Back-
propagation 
algorithm

SGD



Stochastic gradient descent (SGD)
• Conventional gradient descent

• Stochastic gradient descent
– Use mini-batch !′ (small subset of training data) 

to compute the gradient
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Back-propagation algorithm
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Regularization
• What is regularization
– “any modification we make to a learning 

algorithm that is intended to reduce its 
generalization error but not its training error”

• Some methods
1. Put extra constraints on a ML model
2. Add extra terms in the objective function
3. Ensemble methods, combining multiple 

hypotheses that explain the training data.
• Fundamental properties
– Generally increasing bias for reducing variance.
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Parameter norm penalities
• Regularized objective function

• L2 parameter regularization (ridge regression)

• L1 parameter regularization (LASSO)

• Elastic net
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The norm penalty term
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2. APPLICATIONS TO TRAVEL 
BEHAVIOR ANALYSIS



Applications of deep learning 
method in transport studies

18Varghese, V. Chikaraishi, M., Urata, J. (2020) Deep Learning in Transport Studies: A Meta-Analysis 
on the Prediction Accuracy, Journal of Big Data Analytics in Transportation, Vol. 2, 199–220.



Tension between theory-driven methods 
(classical choice models) and data-driven 
methods (machine learning)
• Winner of the 2018 Eric Pas Best Dissertation Award

– Timothy Brathwaite
• The Holy Trinity: Blending Statistics, Machine Learning and Discrete 

Choice with Applications to Strategic Bicycle Planning

• ICMC2019 keynote
– Joan Walker

• Choice modelling in an age of machine learning

• Honorable Mention of the 2019 Eric Pas Best 
Dissertation Award
– Shenhao Wang

• Deep neural networks for choice analysis

19
And many others...



Problem setting

• Standard logit model:

• The conventional form of !"#:
– Linear approximation (rooted to the Taylor's 

theorem)
– Also known as a linear-in-parameter model

• Problem at hand:
– Is there any better way to determine the 

functional form?
• Obviously, taking into account the non-linearity of !"#

would improve the goodness-of-fit.
• What is the cost of doing that?

20

$"# =
exp !"#

Σ#*+,- exp !"#*



Problem setting
• Can we understand the non-linear 

transformation of !"# logically?

21

!"#

Travel time of mode j

Example: contribution of travel time to mode/route choice model

Linear approximation

Logarithm transformation

Highly non-linear transformation



Non-linearity through neural network (NN): 
Itʼs about how to construct network architecture
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Fully connected DNN often does not work well 
(and produce less explainable results)

Seeking a better 
network structure 
in between.
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Non-linearity through neural network (NN): 
Itʼs all about network architecture

9

!"# = Logit(+,) =
exp 1"#

Σ#345
6 exp 1"#3

A classical MNL Network architecture

1"# = 758"#5 + 7:8"#: + ⋯

Travel 
time of 
mode <

Travel 
cost of 
mode <

… 1"5
75
7:Mode 1

… 1":
75
7:Mode 2

… 1"6
75
7:Mode J

… Lo
git
(+

,)

!"5

!":

!"6

!"# =
exp 1"#

Σ#345
6 exp 1"#3

(Deep) NN Network architecture

1"# = = > = : = 5 ?,

1"5Mode 1

1":Mode 2

1"6Mode J

Lo
git
(+

,) !"5

!":

!"6

(Fully connected)

So
ftm

ax

= 5 = : = >
An example of =: Rectified linear unit (ReLU)



SOME EFFORTS TO IMPROVE 
THE INTERPRETABILITY

ü Sifringer, B., Lurkin, V.and Alahi, A.: Enhancing discrete choice models with 
representation learning. Transportation Research Part B 140, 236-261, 2020.

ü Wang, S.: Deep neural networks for choice analysis, PhD Dissertation at MIT,2020 
https://dspace.mit.edu/handle/1721.1/129894

ü Han Y, Pereira FC, Ben-Akiva M, Zegras C. A neural-embedded discrete choice 
model: Learning taste representation with strengthened interpretability. 
Transportation Research Part B: Methodological. 2022;163:166-86.
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https://dspace.mit.edu/handle/1721.1/129894


Interpretability (Lipton, 2018)
• Motivations for asking interpretability
– trust, causality, transferability, informativeness, 

and fair and ethical decision making

• Two broader categories of interpretability
– Transparency

• i.e., how does the model work.
• The opposite of “black-boxness”

– Post hoc explanations
• i.e., what else can the model tell me.
• Extracting information from learned models.
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Efforts to keep both interpretability 
and accuracy
• Wang (2020)

– From fully connected deep neural network (F-DNN) to 
DNN with alternative-specific utility functions (ASU-DNN)
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Efforts to keep both interpretability 
and accuracy
• Sifringer et al. (2020)

– Traditional linear-in-parameters are assumed for 
important policy variables, while DNN is used for the rest 
of variables (TB-ResNets proposed by Wang (2020) also follows a similar idea, 
but use a different method to implement it)
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Model of Sifringer et al. (2020)
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!"# = Logit(+,) =
exp 1"#

Σ#345
6 exp 1"#3

A classical MNL

1"#789 = :5;"#5789 + :=;"#=789 + ⋯

!"# =
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(Deep) NN

1"#88 = ? @ ? = ? 5 A,BB

(Fully connected)

An example of ?: Rectified linear unit (ReLU)

!"# = Logit(+,) =
exp 1"#

Σ#345
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Sifringer et al. (2020)

1"# = 1"#789 + 1"#88

Note: 1"#88 should not include variables 
used in 1"#789



Han et al. (2022): Further extension 
of Sifringer et al. (2020)
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!"# = Logit(+,) =
exp 1"#

Σ#345
6 exp 1"#3

Sifringer et al. (2020)

1"# = 1"#789 + 1"#88

!"# = Logit(+,) =
exp 1"#

Σ#345
6 exp 1"#3

Han et al. (2022)

1"# = ;"<8="#<8 + ;789="#789

;"<8 = >?@ABCBA D";F
Individual characteristics

Note: Han et al. (2022) and Sifringer
et al. (2020) are essentially the same 
when ="#<8 only contain the constant.

Taste heterogeneities are considered in Han et al. (2022), 
which represents through individual characteristics D"



Relationship between Han et al. 
(2022) and latent class model
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From a perspective of moderation effects
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Mixed logit

Latent class

Han et al. (2022)

!"# $"#
%

Varying due to unobserved factors

!"# $"#
%&

Varying depending on individual characteristics '"

!"# $"#
%&

Varying depending on individual characteristics '"

Latent class model is comparable to feed-forward neural 
network under a certain condition (Vermunt and Magidson. 2003)



From a perspective of moderation effects

• The drawback of the straightforward 
application of neural network is in its 
interpretability. 

• From the latent class model perspective, 
this issue essentially comes from the fact 
that all input variables have double roles, 
i.e., (1) variables directly affecting the 
choice decisions, and (2) variables affecting 
the class belonging probability which plays 
a moderator role. 
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REVISITING THE ROLE OF 
REGULARIZATION

Han Y, Pereira FC, Ben-Akiva M, Zegras C. A neural-embedded discrete 
choice model: Learning taste representation with strengthened 
interpretability. Transportation Research Part B: Methodological. 
2022;163:166-86.
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Interesting finding in Han et al.
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Generate synthetic 
datasets using “true” 
utility function shown 
on the right

When !"#$%& and '("!%&
are correlated () = 0.6), 
The performance of 
TasteNet-MNL could 
outperform that of 
TRUE model !!

True utility function



Why it can be better than the true 
model? Han et al.̓ s interpretation
• According to Han et al. (2022)

– With a wide hidden layer, there is enough flexibility to 
learn two taste parameters that do not interfere with each 
other and together optimize the objective function.

– The introduced L2 regularization constrains the taste 
parameters, making estimated taste variations relatively 
stable. 

• What we can learn from this?
– The importance of regularization !
– Mixed logit model (with the continuous mixture 

distribution) naturally introduces a L2-like regularization 
term into the model estimation (see next page).

– The similar regularization may need to made when the 
model is fairly complex by introducing interaction terms.
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Evgeniou et al. (2007)
• Compare the proposed L2-like regularization 

method and hierarchical Bayes (HB) for 
discrete choice model (which is in principle 
equivalent to the mixed logit (Train, 2009)).

• Confirm that the performance of proposed 
L2-like regularization method outperforms 
that of HB through two case studies.

36

HB L2-like regularization method
Shrinks toward the mean of the 
first-stage prior

Shrink toward the population 
mean 

Samples from posterior 
distribution

Minimize a convex loss function

Posterior distribution is a function 
of parameters of the second-stage 
priors

Loss function is a function of the 
regularization parameter !

The parameters of the second-
stage priors are set exogenously

! is determined using cross-
validation 

Proposed convex optimization approach

Key would be in the flexibility of the regularization parameter



Take-away messages

– Shifting from “choosing theory-driven OR data-driven” to 
“integrating theory-driven AND data-driven”.

– To utilize NN in travel behavior analysis, we should design 
the network structure with paying attention to:
• How to handle nonlinearity in an interpretable manner
• How to handle moderation effects in an interpretable manner

– Han et al.̓ s (2022) work paying attention to both, while it 
opens up further possible ways to tune the model.
• Ishii et al. (2022): Tuning moderation effects using a Tucker 

decomposition technique.
• Han et al. avoid positive travel impedance parameters by taking 

exponential etc., but this does not mean the first derivative is always 
negative.
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RECURRENT NEURAL 
NETWORK

Appendix 1
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Recurrent neural network
• Recurrent neural network
– A neural network that is specialized for 

processing a sequence of values (e.g., time 
series data).

– Parameter sharing
• A recurrent neural network typically shares the same 

parameters across time steps.
• This is needed to generalize and make it possible to 

predict future. 
• An example:

– Recurrent structure:
» Tomorrow will come after today.

– Non-recurrent structure:
» Sep. 18, 2021 will come after Sep. 17, 2021.

– There are a wide variety of recurrent neural 
networks (next slide).
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Examples of RNN structures

42

Recurrent networks that produce an output 
at each time step and have recurrent 
connections between hidden nodes.

Recurrent networks that produce an output at 
each time step and have recurrent 
connections only from the output at the next 
step to the hidden units at the next time step.

Adding connection from the output at time 
t to the hidden unit at time t+1

Bidirectional recurrent networks

Make network deeper

Various structures exist (similar with time series models with lagged variables)



Hierarchical structure of network: 
use the concept of “cell”
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Having a cell (a set of nodes with a particular network structure), 
instead of simply having a node.



LSTM cell (Long short-term memory)
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LSTM cell

Hochreiter and Schmidhuber (1997)

The weight on the self-loop conditioned on the context
(rather than fixed), resulting in the dynamic control of 
the time scale and forgetting behavior of different units.

(Conceptually, it is similar with the introduction of moderators. 
Please refer to Yamamoto senseiʼs lecture note as well)



LSTM cell (Long short-term memory)
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Forget gate

Input gate

State

Output

Output gate

Hochreiter and Schmidhuber (1997)

Other variants...
ü GRU: Gated recurrent unit (Cho et 

al., 2014)
ü Simpler than LSTM, but the 

performance is similar to that of 
LSTM for some applications.


